min	HIII II	11111111	11111	1111	IIII
					Ш

(Pages: 3)

6	THERESA	2
MOTH	Kattakada 695571	I ROLL
* NE	Library	100
1/2	TID VOITO	18 July 1

B - 3702

Reg. No. :

Third Semester B.Sc. Degree Examination, December 2016
First Degree Programme under CBCSS
CHEMISTRY

Core Course II CH 1341 : Inorganic Chemistry – II (2013 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Answer in **one** word to a maximum of **two** sentences. **Each** question carries **1** mark.

- 1. Give the structure of NH₃ molecule.
- 2. What is the bond order of O_2^+ ion?
- 3. Name the equation used for calculating the lattice energy of an ionic compound.
- 4. Name the species responsible for the blue colour exhibited by a dilute solution of an alkali metal in liquid ammonia.
- 5. State Beer-Lambert's law.
- 6. Name the type of nuclear reaction in an atom bomb.
- 7. What happens to the atomic number of an atom when one α particle is emitted?
- 8. Give an example of a fuel gas used for producing flames in flame emission spectroscopy.
- 9. Give an example of a non-aqueous solvent which does not self ionise.
- Name the analytical technique which works on the principle of quantum tunnelling. (10×1=10 Marks)

SECTION-B

Short answer type questions. (Answer not to exceed one paragraph). Answer any eight questions. Each question carries 2 marks.

- 11. Give the structures of IF₅ and IF₇ based on VSEPR theory.
- 12. Sketch the MO diagram of CO and calculate the bond order.
- 13. o-nitrophenol is more volatile than p-nitrophenol. Why?
- 14. How can you explain the conductivity in metals using band theory?
- 15. State Fajan' rules.
- 16. Arrange the following interactions in the increasing order of their strength:
 - a) ion-dipole
 - b) dipole dipole
 - c) induced dipole induced dipole
 - d) dipole induced dipole.
- 17. Give two examples for the use of radioactive isotopes as tracers.
- 18. State and explain the Geiger-Nuttall rule.
- 19. Explain the self ionisation of liquid HF, giving the chemical equation.
- 20. What do you mean by levelling effect of a solvent?
- 21. What are the causes of chemical interferences in atomic absorption spectroscopy?
- 22. Briefly explain the structure of C₆₀ fullerene.

(8×2=16 Marks

SECTION-C

Short essay (Answer not to exceed 120 words). Answer any six questions. Each question carries 4 marks.

23. Sketch the MO diagrams of B_2 , N_2 and O_2 . Arrange them in the increasing order of their bond strength.

- 24. Describe LCAO method with H₂ ion as an example.
- Explain with examples how dipole moment measurements are useful in molecular structure elucidation.
- 26. Explain Born-Haber cycle with a suitable example.
- 27. Explain artificial transmutation and artificial radioactivity with examples.
- 28. Write a note on the mechanical and thermal properties of nanoparticles.
- Discuss the characteristic features and uses of liquid NH₃ as a non-aqueous solvent.
- 30. Acetic acid behaves as a stronger acid in liquid NH₃ than in water. Justify.
- 31. Discuss the principle and uses of transmission electron microscopy. (6×4=24 Marks)

SECTION - D

Long essay. Answer any two questions. Each question carries 15 marks.

- 32. a) Write notes on the principles and applications of TG, DTA and DSC.
 - b) Give the thermogravimetric curve of CuSO₄, 5H₂O.

(12+3)

- 33. a) Write notes on (i) neutron activation analysis and (ii) ¹⁴C dating.
 - b) Explain the nuclear reactions happening in sun's atmosphere. How do they produce huge amount of energy? (10+5)
- 34. a) Describe the hybridisation in methane, ethylene and acetylene.
 - b) Explain the free electron theory of metallic bonding.

(9+6)

- 35. a) What are carbon nanotubes? Describe any two methods for their preparation.
 - b) Describe any two methods, belonging to the top-down approach, for the preparation of nanoparticles. (7+8)

 $(2\times15=30 \text{ Marks})$