/Da	ges	A
ra	yes	7

Reg. No.	:	
Name :		

Sixth Semester B.Sc. Degree Examination, March 2021 First Degree Programme under CBCSS

Chemistry

Core Course XII

CH 1643 : PHYSICAL CHEMISTRY — III

(2018 Admission Regular)

Time: 3 Hours Max. Marks: 80

PART - A

Answer all questions. Each question carries 1 mark.

- Define ionic product of water.
- Write van't Hoff reaction isotherm and explain the terms.
- 3. The $t_{1/2}$ of a reaction is doubled as the initial concentration of the reactant is doubled. What is the order of the reaction?
- What are consecutive reactions? Give one example.
- 5. Define degree of freedom.
- 6. What are conjugate layers?
- 7. Write Nernst equation. Explain the terms in it.

- 8. What are fuel cells? Give one example.
- What is meant by consolute temperature? Give one example for systems having both upper and lower consolute temperature.
- Mention the limitation of quinhydrone electrode.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B (Short answer type)

Answer any eight questions. Each question carries 2 marks.

- Show that for a first order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.
- Derive the integrated rate equation for a zero order reaction.
- 13. What would be the pH of a solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate and making the volume equal to 1 litre? Dissociation constant of acetic acid at 25 °C is 1.75×10^{-5} .
- 14. Explain common ion effect with an example.
- Prove that an invariant system has no degree of freedom by taking water as an example.
- 16. What is meant by chemiluminescence? Give one example.
- Explain the construction of hydrogen electrode.
- 18. What type of molecules will show large negative deviation from ideal behaviour? Give one example.
- 19. What is meant by over voltage?
- 20. Differentiate primary and secondary cells with one example each.
- 21. Calculate the solubility of Al(OH)₃ in water at 25°C if Ksp = 8.5×10^{-32} .

- 22. Explain Grothus-Draper law.
- 23. Explain levelling effect.
- Draw the vapour pressure-composition curves of completely miscible liquid systems.
- 25. What are reference electrodes?
- 26. What are photosensitized reactions?

 $(8 \times 2 = 16 \text{ Marks})$

PART - C (Short essay)

Answer any six questions. Each question carries 4 marks.

- 27. The rate constant of a second order reaction is $5.7 \times 10^{-5} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 25°C and $1.64 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 40°C . Calculate the activation energy.
- Derive an expression for the rate constant of a bimolecular reaction based on intermediate compound formation theory.
- 29. Calculate the Kc and Kx for the reaction

 $N_2 O_4(g) \rightleftharpoons 2 \text{ NO}_2(g)$ for which $K_p = 0.157$ atm at 25°C and 1 atm pressure.

- 30. Discuss the phase diagram of water system.
- Define quantum yield. Discuss the reasons for very low and very high quantum yields with examples.
- 32. Write a note on potentiometric titrations involving redox reactions.
- 33. The molar conductance at infinite dilution of NH₄Cl, NaOH and NaCl are $149.7\,\Omega^{-1}$ cm² mol⁻¹, $248.1\,\Omega^{-1}$ cm² mol⁻¹, $126.5\,\Omega^{-1}$ cm² mol⁻¹ respectively. Calculate the molar conductance at infinite dilution of NH₄OH?
- 34. Explain Deby-Falkenhagen effect.

- 35. Discuss the effect of solvents on ionic strength.
- 36. Write a note on corrosion and its prevention.
- Write a short note on conductometric titrations involving strong acid-strong base and weak acid-strong base.
- 38. Explain the law of mass action.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D (Long essay)

Answer any two questions. Each question carries 15 marks.

- 39. (a) Discuss the collision theory and derive the rate equation for a 2nd order reaction based on collision theory.
 - (b) Derive the Nernst equation for electrode potential.

8

- 40. Discuss the hydrolysis of four different types of salts and derive the hydrolysis constant in each case.
- 41. (a) Discuss the phase diagram of FeCl₃-Water system.

7

- (b) Describe the moving boundary method for the determination of transport number.
 8
- 42. Write an essay on Nernst distribution law, its derivation and applications.
- 43. Write an essay on enzyme catalysis.
- 44. (a) What are the different types of electrodes? Explain their electrode reactions.

0

7

(b) Explain the terms fluorescence, phosphorescence and eutectic point.

 $(2 \times 15 = 30 \text{ Marks})$